Expert Sleepers Disting Quick Reference

_		-		
	Group 1	Group 2	Group 3	Group 4
а	Precision Adder	Linear/Exponential Converter	Sample and Hold	<u>LFO</u>
b	Four Quadrant Multiplier	Quantizer	Slew Rate Limiter	Clockable LFO
С	Full-wave Rectifier	<u>Comparator</u>	Pitch and Envelope Tracker	VCO with linear FM
d	Minimum/maximum	Dual Waveshaper	Clockable Delay/Echo	VCO with waveshaping

1-a Precision Adder

A = X + Y + offset B = X - Y - offset $offset = \pm 10V$ in 1V steps derived from Z

1-b Four Quadrant Multiplier

A = X * Y * scale B = -X * Y * scale scale = 1/10 to 10x in steps derived from Z

	Scale	1x	2x	3x	4x	5x	6x	7x	8x	9x	10x
	LED a	0	-	0	-	0	-	0	-	0	-
LED 3 unlit	LED b	-	0	0	-	-	0	0	-	-	0
	LED c	-	-	-	0	0	0	0	-	-	-
	LED d	-	-	-	-	-	-	-	0	0	0
	Scale		/2	/3	/4	/5	/6	/7	/8	/9	/10
	Scale LED a		/2 -	/ 3 0	/4 -	/ 5 0	/6 -	/7 0	/8 -	/9 0	/10 -
LED 3 lit	Scale LED a LED b		/ 2 - 0	/ 3 0	/ 4 - -	/ 5 0 -	/ 6 - 0	/7 0 0	/8 - -	/ 9 0 -	/ 10 - 0
LED 3 lit	Scale LED a LED b LED c		/2 - 0 -	/ 3 0 0 -	/4 - - 0	/5 0 - 0	/ 6 - 0	/7 0 0	/8 - -	/9 0 -	/10 - 0 -

2-a Linear/Exponential Converter

A = (2 ^ X) * scale B = log2(Y / scale) Z is Hz/V scale, centered on 1kHz

2-b Quantizer

A = quantized(X)

B = trigger on note change

Z chooses scale & function of Y

Y = transpose (Z positive) or trigger (Z negative)

Scal e	chroma tic	major scale	minor scale	major triad	minor triad	root +5th	major triad +6th	minor triad +6th	major triad +7th	minor triad +7th	root +5th +6th	root +5th +7th	pentatonic major	pentatonic minor
LED a	-	0	-	0	-	0	-	0	-	0	-	0	-	0
LED b	-	-	0	0	-	-	0	0	-	-	0	0	-	-
LED c	-	-	-	-	0	0	0	0	-	-	-	-	0	0
LED d	-	-	-	-	-	-	-	-	0	0	0	0	0	0

2-c Comparator

A = gate from X > Y B = inverted gate

Z is hystoresis

Z is hysteresis

1-c Full-wave Rectifier

A = abs(X + Y) or abs(X) B = abs(X - Y) or abs(Y) Z selects mode

1-d Minimum/maximum

A = min(X, Y) B = max(X, Y) Z is gate

2-d Dual Waveshaper

A = folded X B = triangle-to-sine Y Z is gain

3-a Sample and Hold

A = X when Y exceeds 1V $B = noise \pm 8V$ Z is slew rate

3-b Slew Rate Limiter

A = linear slew rate limited (X + Y) $B = \log \text{ slew rate limited } (X + Y)$ Z is slew rate

3-c Pitch and Envelope Tracker

A = V/octave pitch derived from X, plus Y B = envelope dervied from XZ is slew rate for envelope

3-d Clockable Delay/Echo

X is signal Y is clock input Z is feedback A = dry + delay in ratio according to feedback B = delay signal only

4-a LFO

X is Hz/V frequency Y is waveshape Z is tune A is saw -> sine -> triangle B is pulse -> square -> pulse

Input Y	-10V	0V	+10V			
Output A	saw	sine	triangle			
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse			

4-b Clockable LFO

X is clock input

Y is waveshape

Z is integer multiplier/divider

A is saw -> sine -> triangle

В	IS	pu	lse	->	square	->	pulse	
								_

Input Y	-10V	0V	+10V			
Output A	saw	sine	triangle			
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse			

	Frequenc y	1x	2x	3x	4x	5x	6x	7x	8x	9x	10x	11x	12x	13x	14x	15x	16x
	LED a	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-
LED 3	LED b	-	0	0	-	-	0	0	-	-	0	0	-	-	0	0	-
unnt	LED c	-	-	-	0	0	0	0	-	-	-	-	0	0	0	0	-
	LED d	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	-
	LED 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0
	Frequenc y		/2	/3	/4	/5	/6	17	/8	/9	/10	/11	/12	/13	/14	/15	/16
	LED a		-	0	-	0	-	0	-	0	-	0	-	0	-	0	-
LED 3 lit	LED b		0	0	-	-	0	0	1	1	0	0	-	-	0	0	-
	LED c		-	-	0	0	0	0	-	1	-	-	0	0	0	0	-
	LED d		-	-	-	-	-	-	0	0	0	0	0	0	0	0	-
	LED 4	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	0

4-c VCO with linear FM

X is V/Oct pitch input Y is linear FM input Z is tune ±0.5 octaves A is sine B is saw

4-d VCO with waveshaping

X is V/Oct pitch input

Y is waveshape/PWM

Z is tune ±0.5 octaves

A is saw -> tri -> saw В

3 IS	pul	se	->	squ	are	->	pulse	
Innu	٠v			101/			0\/	

		00.00			
Input Y	-10V	0V	+10V		
Output A	saw (falling)	triangle	saw (rising)		
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse		