Expert Sleepers Disting Quick Reference

	Group 1	Group 2	Group 3	Group 4
a	Precision Adder	Linear/Exponential Converter	Sample and Hold	LFO
b	Sour Quadrant Multiplier	Quantizer	Slew Rate Limiter	Clockable LFO
c	Full-wave Rectifier	Comparator	Pitch and Envelope Tracker	VCO with linear FM
d	Minimum/maximum	Dual Waveshaper	Clockable Delay/Echo	VCO with waveshaping

1-a Precision Adder
$A=X+Y+$ offset
$B=X-Y$ - offset
offset $= \pm 10 \mathrm{~V}$ in 1 V steps derived
from Z
1-b Four Quadrant Multiplier
$A=X *{ }^{*}$ scale
$B=-X^{*} Y^{*}$ scale
scale $=1 / 10$ to $10 x$ in steps derived
from Z

LED 3 unlit	Scale	1x	2x	3x	4x	5x	6x	7x	8x	9x	10x
	LED a	0	-	0	-	0	-	0	-	0	-
	LED b	-	0	0	-	-	0	0	-	-	0
	LED c	-	-	-	0	0	0	0	-	-	-
	LED d	-	-	-	-	-	-	-	0	0	0
LED 3 lit	Scale		12	13	14	15	16	17	18	19	/10
	LED a		-	0	-	0	-	0	-	0	-
	LED b		0	0	-	-	0	0	-	-	0
	LED c		-	-	0	0	0	0	-	-	-
	LED d		-	-	-	-	-	-	0	0	0

1-c Full-wave Rectifier
$A=\operatorname{abs}(X+Y)$ or $\operatorname{abs}(X)$
$B=\operatorname{abs}(X-Y)$ or $\operatorname{abs}(Y)$
Z selects mode
1-d Minimum/maximum
$A=\min (X, Y)$
$B=\max (X, Y)$
Z is gate

2-a Linear/Exponential Converter

$A=\left(2^{\wedge} X\right) *$ scale
$B=\log 2(Y /$ scale $)$
Z is Hz / V scale, centered on 1 kHz

2-b Quantizer

A = quantized (X)
$B=$ trigger on note change
Z chooses scale \& function of Y
$Y=$ transpose (Z positive) or trigger (Z negative)

$\begin{gathered} \text { Scal } \\ \text { e } \end{gathered}$	chroma tic	major scale	minor scale	major triad	minor triad	$\begin{aligned} & \text { root } \\ & +5 \text { th } \end{aligned}$	$\underset{+6 \text { th }}{\substack{\text { major triad }}}$	$\underbrace{\text { minor triad }}_{+6 \text { th }}$	$\begin{gathered} \hline \text { major triad } \\ +7 \text { th } \end{gathered}$	$\begin{gathered} \text { minor triad } \\ +7 \text { th } \end{gathered}$	$\begin{aligned} & \text { root }+5 \text { th } \\ & +6 \text { th } \end{aligned}$	$\begin{gathered} \text { root +5th } \\ +7 \text { th } \end{gathered}$	pentatonic major	pentatonic minor
$\begin{array}{\|c\|} \hline \text { LED } \\ \mathbf{a} \end{array}$	-	0	-	0	-	0	-	0	-	0	-	0	-	0
$\begin{array}{\|c\|} \hline \text { LED } \\ \mathbf{b} \end{array}$	-	-	0	0	-	-	0	0	-	-	0	0	-	-
$\begin{array}{\|c\|} \hline \text { LED } \\ \mathrm{c} \\ \hline \end{array}$	-	-	-	-	0	0	0	0	-	-	-	-	0	0
$\begin{array}{\|c} \hline \text { LED } \\ \mathrm{d} \end{array}$	-	-	-	-	-	-	-	-	0	0	0	0	0	0

2-c Comparator
$A=$ gate from $X>Y$
$B=$ inverted gate
Z is hysteresis

```
2-d Dual Waveshaper
A = folded X
B = triangle-to-sine Y
Z is gain
```


3-a Sample and Hold

$A=X$ when Y exceeds $1 V$
$B=$ noise $\pm 8 \mathrm{~V}$
Z is slew rate

3-b Slew Rate Limiter

$A=$ linear slew rate limited $(X+Y)$
$B=\log$ slew rate limited $(X+Y)$
Z is slew rate

3-c Pitch and Envelope Tracker

$\mathrm{A}=\mathrm{V} /$ octave pitch derived from X , plus Y
$B=$ envelope dervied from X
Z is slew rate for envelope

3-d Clockable Delay/Echo

X is signal
Y is clock input
Z is feedback
A = dry + delay in ratio according to
feedback
$B=$ delay signal only

4-a LFO

X is Hz / V frequency
Y is waveshape
Z is tune
A is saw -> sine -> triangle
B is pulse -> square -> pulse

Input Y	-10V	OV	+10V
Output A	saw	sine	triangle
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse

4-b Clockable LFO

X is clock input
Y is waveshape
Z is integer multiplier/divider
A is saw -> sine -> triangle
B is pulse -> square -> pulse

Input Y	$\mathbf{- 1 0 V}$	0V	$+10 \mathrm{~V}$
Output A	saw	sine	triangle
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse

LED 3 unlit	$\begin{gathered} \text { Frequenc } \\ y \end{gathered}$	1x	2 x	3 x	4x	5x	6x	7		x	x	10x	11x	12x	13x	14x	15x	16x
	LED a	0	-	0	-	0	-	0		-	0	-	0	-	0	-	0	-
	LED b	-	0	0	-	-	0	0		-	-	0	0	-	-	0	0	-
	LED c	-	-	-	0	0	0	0		-	-	-	-	0	0	0	0	-
	LED d	-	-	-	-	-	-	-		0	0	0	0	0	0	0	0	-
	LED 4	-	-	-	-	-	-			-	-	-	-	-	-	-	-	0
LED 3 lit	Frequenc y		12	13	14	15	16	17		8	19	/10	/11	/12	/13	114	/15	/16
	LED a		-	0	-	0	-	0		-	0	-	0	-	0	-	0	-
	LED b		0	0	-	-	0	0		-	-	0	0	-	-	0	0	-
	LED c		-	-	0	0	0	0		-	-	-	-	0	0	0	0	-
	LED d		-	-	-	-	-			0	0	0	0	0	0	0	0	-
	LED 4	-	-	-	-	-	-			-	-	-	-	-	-	-	-	0

4-c VCO with linear FM

X is $\mathrm{V} /$ Oct pitch input
Y is linear FM input
Z is tune ± 0.5 octaves
A is sine
B is saw

4-d VCO with waveshaping

X is $V /$ Oct pitch input
Y is waveshape/PWM
Z is tune ± 0.5 octaves
A is saw -> tri -> saw
B is pulse -> square -> pulse

Input Y	$\mathbf{- 1 0 V}$	$\mathbf{0 V}$	$+\mathbf{+ 1 0 V}$
Output A	saw (falling)	triangle	saw (rising)
Output B	0% duty cycle pulse	50% duty cycle pulse (square)	100% duty cycle pulse

